Consumption of fluoridated water by Mexican children and its relationship with the presence of dental caries and fluorosis

Authors

DOI:

https://doi.org/10.47990/ecm39a54

Keywords:

dental caries, fluorine, Mexico, Pediatric dentistry, public health

Abstract

Introduction Dental caries and fluorosis are a public health problem; their relationship with the levels of fluoride consumed should be analyzed and reported.

Aim. Analyze the levels of fluoride in the water consumed by school-aged children. Based on the results obtained, establish its relationship with the prevalence and severity of fluorosis and dental caries.

Material and methods. In total, 52 tests were taken from four different community water sources. The prevalence and severity of fluorosis was determined using Dean's index and the caries were classified according to their depth in 64 children. Descriptive and multivariate statistics were carried out.

Results. The highest fluoride values in water were those obtained in well water with 1.63 PPM, followed by spring water with 1.47 PPM. Fluoride levels in the purifiers were within the allowed range. The prevalence of fluorosis and caries in children turned out to be high. The following relationships were found: a) when a child reports not drinking water from a purifier, this is related to the presence of fluorosis and cavities, b) in children who do not drink water from the spring or the tap, but do drink water from purifying, fluorosis and caries are absent.

Conclusions. The levels of fluoride in the spring water and the intake tap exceeded the permitted limits and its consumption is related to the presence of fluorosis and cavities.

References

1. Organización Mundial de la Salud. Poner fin a las caries dental en la infancia.; 2021. Disponible en: https://apps.who.int/iris/bitstream/handle/10665/340445/9789240016415-spa.pdf?sequence=1&isAllowed=y

2. DenBesten P, Wu L. Chronic fluoride toxicity: dental fluorosis. Monogr Oral Sci. 2011; 22: 81-96. doi:10.1159/000327028

3. Rivas Gutierrez J, Huerta Vega L. Fluorosis dental: metabolismo, distribución y absorción del fluoruro. Rev ADM. 2005;62(6):225-229. Disponible en: https://www.medigraphic.com/pdfs/adm/od-2005/od056d.pdf

4. Hernández Montoya V. Fluorosis y caries dental en niños d 9 a 11 años del Estado de Aguascalientes, México. Rev Int Contam Ambient. 2003;19(4):197-204. Disponible en: http://www.redalyc.org/articulo.oa?id=37019405%0ACómo

5. World Health Organization. WHO Guidelines for drinking-water quality. Health criteria and other supporting information. Published online 1196. Disponible en: https://www.who.int/water_sanitation_health

6. Secretaría de Salud. Salud ambiental, agua para uso y consumo humano. NOM-127-SSA1-1994.; 1994. Disponible en: https://agua.org.mx/biblioteca/norma-oficial-mexicana-nom-127-ssa1-1994

7. Secretaría de Salud. Norma Oficial Mexicana NOM-179-SSA1-2020, Agua para uso y consumo humano. Control de calidad del agua distribuida por los sistemas de abastecimiento de agua.; 2020.

8. Aguilar Díaz FC, Morales Corona F, Cintra Viveiro AC, De la Fuente Hernández J. Prevalence of dental fluorosis in Mexico 2005-2015 : a literature review. Salud Publica Mex Mex. 2017;59(3):306-313. doi:http://doi.org/10.21149/7764

9. Vilvey LJ. Caries dental y el primer molar permanente. Gac Médica Espirituana. 2015;17(2):92-106. Disponible en: http://scielo.sld.cu/scielo.php?pid=S1608-89212015000200011&script=sci_arttext&tlng=pt

10. Beltrán Valladares PR, Cocom Tun H, Casanova Rosado JF, Vallejos Sánchez AA, Medina Solís CE, Maupomé G. Prevalencia de fluorosis dental y fuentes adicionales de exposición a fluoruro como factores de riesgo a fluorosis dental en escolares de Campeche, México. Rev Investig Clin. 2005;57(4):532-539. Disponible en : https://www.medigraphic.com/cgi-bin/new/resumen.cgi?IDARTICULO=6428

11. Rodriguez Dozal S, Alarcón Herrera MT, Cifuentes E, Barraza A, Loyola Rodrìguez JP, Sanin Chihuahua LH. Dental fluorosis in rural communities of Chihuahua, Mexico. Fluoride. 2005;38(2):143-150. Disponible en: https://fluorideresearch.org/382/files/382143-150.pdf

12. Alarcón Herrera MT, Martín Domínguez IR, Trejo Vázquez R, Rodriguez Dozal S. Well water fluoride, dental fluorosis, and bone fractures in the Guadiana Valley of Mexico. Fluoride. 2001;34(2):139-149. Disponible en: https://www.researchgate.net/profile/Ignacio-Martin-Dominguez/publication/236153410_Well_water_fluoride_dental_fluorosis_and_bone_fractures_in_the_Guadiana_Valley_of_Mexico/links/00b7d51671645f2b08000000/Well-water-fluoride-dental-fluorosis-and-bone-fractures-in-the-Guadiana-Valley-of-Mexico.pdf

13. Rojas Vázquez B. Severidad de fluorosis dental en escolares de dos comunidades del Estado de Hidalgo, México. Published online 2013. Disponible en: https://ru.dgb.unam.mx/bitstream/20.500.14330/TES01000692050/3/0692050.pdf

14. Gutiérrez M, Alarcón-Herrera MT. Fluoruro en aguas subterráneas de la región centro-norte de México y su posible origen. Rev Int Contam Ambient. 2022;38:389-397. doi:10.20937/rica.54307 Disponible en: https://www.scielo.org.mx/scielo.php?pid=S0188-49992022000100119&script=sci_arttext

15. Adrián Ortega Guerrero M. Presencia, distribución, hidrogeoquímica y origen de arsénico, fluoruro y otros elementos traza disueltos en agua subterránea, a escala de cuenca hidrológica tributaria de Lerma-Chapala, México. Rev Mex Ciencias Geol. 2009;26(1):143-161. Disponible en: https://www.scielo.org.mx/scielo.php?pid=s1026-87742009000100012&script=sci_arttext

16. DenBesten PK. Biological mechanisms of dental fluorosis relevant to the use of fluoride supplements. Community Dent Oral Epidemiol. 1999;27(1):41-47. doi:10.1111/j.1600-0528.1999.tb01990.x

17. Instituto Nacional de Estadística Geografía e Informática (INEGI). Panorama Sociodemográfico de Hidalgo: Censo de Población y Vivienda 2020.; 2021. Disponible en: https://www.inegi.org.mx/contenidos/productos/prod_serv/contenidos/espanol/bvinegi/productos/nueva_estruc/702825197858.pdf

18. Hanna Instrumentes. Colorímetro Checker® HC para fluoruro intervalo bajo. Manual de operación. Disponible en: https://hannainst.com.mx/productos/colorimetros-checker/colorimetro-checker-hc-para-fluoruro-intervalo-bajo/

19. Fuertes Paguay MB, Carrera Guanga GL, Mariño Rodríguez MJ. (2023). Métodos para el diagnóstico de lesiones cariosas.Rev Cient, 102 (Sup 2), 1-13. https://revinfcientifica.sld.cu/index.php/ric/article/view/4462/6046

20. Pitts, N. B., Ekstrand, K. R., ICDAS Foundation. (2013). International Caries Detection and Assessment System (ICDAS) and its International Caries Classification and Management System (ICCMS)–methods for staging of the caries process and enabling dentists to manage caries. Community dentistry and oral epidemiology, 41(1), e41-e52.

19. Higashida B. Caries dental. En: Odontología Preventiva. Mexico, D.F: Mc Graw-Hill; 2000. p 130. ISBN: 970-10-2317-X

20. Dean, HT. Fluorine: Water-borne fluorides and dental health. In: Pelton WJ, Wisan JM. (eds), Dentistry in Public Health. Philadelphia: Saunders, 1949. 143-145. 44.

21. Dean HT. Classification of mottled enamel diagnosis. J Am Dent Assoc 1934; 21: 1421-6. https://doi.org/10.14219/jada.archive.1934.0220

22. R Core Team.(2020). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/.

23. Morgenthaler, S. (2009). Exploratory data analysis. Wiley Interdisciplinary Reviews: Computational Statistics, 1(1), 33-44. https://doi.org/10.1002/wics.2.

24. Lakens, D., & Caldwell, A. R. (2021). Simulation-based power analysis for factorial analysis of variance designs. Advances in Methods and Practices in Psychological Science, 4(1), 2515245920951503. https://doi.org/10.1177/2515245920951503.

25. Stahle, L., & Wold, S. (1989). Analysis of variance (ANOVA). Chemometrics and Intelligent Laboratory Systems, 6(4), 259–272. https://doi.org/10.1016/0169-7439(89)80095-4.

26. Keselman, H. J., & Rogan, J. C. (1977). The Tukey multiple comparison test: 1953–1976. Psychological Bulletin, 84(5), 1050. https://doi.org/10.1037/0033-2909.84.5.1050.

27. Mori, Y., Kuroda, M., Makino, N. (2016). Multiple Correspondence Analysis. In: Nonlinear Principal Component Analysis and Its Applications. SpringerBriefs in Statistics(). Springer, Singapore. https://doi.org/10.1007/978-981-10-0159-8_3.

28. Marmot M, Bell R. Social determinants and dental health. Advances in dental research. 2011; 23.2: 201-206. Doi: 10.1177/0022034511402079

29. Cruz CD, Celada CN, Sánchez BI, et al. Ingesta de fluoruro por alimentos y bebidas en niños de 4 a 72 meses. Rev. ADM. 2006;63 (2):69-73. Disponible en: https://www.medigraphic.com/pdfs/adm/od-2006/od062e.pdf

30 Velez-León, Eleonor, et al. "Worldwide Variations in Fluoride Content in Beverages for Infants." Children. 2023; 10.12: 1896. https://doi.org/10.3390/children10121896

31. Martínez‐Mier, E. Angeles, et al. Fluoride intake from foods, beverages and dentifrice by children in Mexico. Community dentistry and oral epidemiology. 2003; 31.3: 221-230. https://doi.org/10.1034/j.1600-0528.2003.00043.x

32 Sánchez S, Pontigo AP, Heredia E, Ugalde JA. Dental fluorosis in adolescents of three small villages of Queretaro State. Rev Mex Pediatría. 2004;71(1):5-9. Disponible en: http://www.medigraphic.com/pdfs/pediat/sp-2004/sp041b.pdf

Published

2025-11-03

Issue

Section

Original Research Articles

How to Cite

Consumption of fluoridated water by Mexican children and its relationship with the presence of dental caries and fluorosis. (2025). Latin American Pediatric Dentistry Journal, 15. https://doi.org/10.47990/ecm39a54